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On the basis of the Jauch-Piron quantum probability calculus a zero-one law 
for sequential tertninal events is proven, and the significance of certain crucial 
axioms in the quantum probability calculus is discussed. The result shows that 
the Jauch-Piron set of axioms is appropriate for the non-Boolean algebra of 
sequential events. 

1. INTRODUCTION 

In Rehder (1980), so-called sequential connectives P R  Q, PI I Q, P-'->Q 
(read: "P  and then Q," "P  or then Q," "if first P then Q") for projections 
P, Q in a complex Hilbert space H were derived from the "conditional 
probability operator" PQP in the following way: 

P[--] Q is the projection onto the orthocomplement of the null space 
Eo(PQP ) of PQP, i.e., P[--]Q is the projection onto the dosed range 
("support") of PQP. The equality 

( x, PQPx ) = ( QPx, QPx ) = II Qexll 2 

shows that Eo(PQP ) --Eo(QP ), and we may write 

PRQ--{xIQPx=O} • 

Here, as always in the sequel, we identify projections with their ranges, 
e.g., 

P ~ Q x = x c ~ x ~ P N Q  
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It is easy to see that 

P[-IQ-- P A ( P •  (1.1) 

(cf. Rehder, 1980, Section 2). 
Then P LJ Q is defined as 

PI IQ:=(P•177 • (1.2) 

=PV(P•  

and the material quasi-implication P--~Q is given by 

P---~Q:=P• IQ 

= P •  (1.3) 

It was shown in Rehder (1980) that [~ and II are neither commuta- 
tive nor associative; that P[-]Q and P OQ are not the infimum and 
supremum of P and Q, so that in particular, [-1, L] together with the 
inclusion < ("implication") for subspaces in H do not define a lattice. (See, 
however, Kr6ger's study of so-called "Zwerch-Verbfinde" in Kr6ger (1973). 

Instead, some new rules are valid, notably 

P-- Q[~P + Q • F-]P- I(P,Q) 

where I(P, Q) is interpreted as an interference term given by 

P• F](QI-]P)= P• • I--]P ) 

(for this identity, see Rehder (1980). The meet and join of two projections 
can be written as sequential events, too: 

PAQ = P[-I(P• 0 Q ) =  Q ~ ( Q  • 0 P) (1.4) 

PVQ=PI I(P• I(Q• (1.5) 

and for the classical material implication operator P •  Q, we have 

P • 1 7 7  (1.6) 

displaying a curious dual symmetry to formulas (1.1), (1.2), (1.3) above. 
Moreover, the well-known quantum-theoretical probability calculus (as in 
Jauch, 1968, p. 94) can be applied for sequential events (see Rehder, 1980, 
sec. 5). 

In this paper we wish to show that with this probability theory, an 
analog to Kolmogorov's zero-one law, is true for (sequential) terminal 
a-algebras (Theorem 3.6 below). 
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2. SEQUENTIAL o- ALGEBRAS AND PROBABILITIES 

Examples. 
is defined as 

Similar to classical probability theory, we call a family A of projec- 
tions in H an algebra, if A is closed with respect to finite applications of 
~ ,  I I ,  ~ ,  and orthocomplementation • The above identities (1.4), (1.5) 
show that A is also closed with respect to A and V.  

Examples. A single projection P "generates" the algebra a (P ) :  = 
(O ,H ,P ,P•  For two projections P and Q the "generated" algebra 
o(P, Q) has already infinitely many members, if P and Q do not commute: 
e.g., P[~Q,  ( P F ] Q ) [ ~ Q ,  ( (P[ - ]Q)[~Q)[~Q,  etc. 

As we mentioned in Section 1, associativity of three or more projections 
with respect to R or L] is not generally valid, so that we have to use 
brackets in order to avoid ambiguities in terms containing repeated con- 
nectives. A simple convention is used, however, to make notations less 
clumsy: formulas are to be read from left to right, so that, e.g., 

PI [~P2[~P3 

means (Pl ~]P2)[-IP3, etc. Also let F] be stronger than A,  e.g., P 1 A P  2 
(-1 P3 = Pl A(P2 I-]/'3)- Deviating slightly from classical probability theory, 
we make the following definition. 

2.1. Definition. An algebra A is a o-algebra if from P~ E A, n = 
1,2 . . . . .  P,--~P weakly and P is a projection in H, it follows that P E A .  

The [_l-limit of a sequence of projections Pn, n = 1,2 . . . . .  

oo 

I I e o : - - e ,  u e 2 u e 3 u  �9 
n = l  

Un~~ is well defined and again a projection, 

so that 

Pl <~PI UP2  <<'P1 UP2[ [P3 <~ " " " 

I l en=e,v(P ue2)v(e ue2ue3)v ' 
n = l  

is an increasing sequence of projections having as its limit the closure of 
the union of P1,P1 [__]P2 . . . . .  Pl I IP2LJ "'" [_lPn: 

= 0 0 
n = l  n = l  n = l  
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Analogously, the U]-limit 

oo 

I ] P ~ : = P , [ ~ P 2 R P 3 V - ] " "  
n = l  

is a well-defined projection, which can be written as an intersection 

I IP.= n n) 
n = l  n = l  

because PI >-" Pl  I--]P2 >/ P1 [~P2[--]P3 >/ " " " is a decreasing sequence of pro- 
jections. The u- l imi t  and the R-l imit  are weak limits of projections 
(Sz. Nagy, 1967, p. 17), so that they both belong to the o-algebra generated 
byPn,  n = l , 2  . . . .  

It is clear that for a family At, t ~ T, of o-algebras, the intersection 
n t E T A t  is again a o-algebra, o ( P i : i  E I )  denotes the smallest o-algebra 
containing all Pi, i ~ I : o( P i : i E 1)  is said to be "generated" by Pi, i ~ I.  (cf. 
the above examples). For I =  N we also write o(P1, P 2 . . . .  ) = 

01 . . . . .  o(Pn,Pn+I . . . .  ) = O  n . 

2.2. Definition. The terminal o-algebra generated by a sequence of 
projections P1,P2 . . . .  is the o-algebra 

oo 

A oo : = ("] o n 
n = l  

Following Jauch and Piron (Jauch, 1968, p. 94; Piron, 1976), we 
introduce a probability function w on a o-algebra A. Let P, Q, Pn (n G •) 
be projections from a o-algebra A. 

2.3. Definition. A real-valued function w on A is called a normed 
additive functional iff 

(W1) 0 < w ( P ) <  1 
( w 2 )  w(0) = 0, w ( H )  = 1 
(W3) P Q = O ~ w ( P [ _ ] Q ) = w ( P ) + w ( Q )  

(note that P II Q = P + Q). 

Consequences. 
(W4) w ( P )  = 1 - w ( P  • from (W3), (W2) 
(W5) ? < Q ~ w ( e )  <~ w ( Q )  
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for 

(w6) 
for 

P < Q~PQ • =0 

~w(P)+w(Q• IO• 

~w(P) = w(PI IQ •  w(Q • 

=w(P~ IQ• l+w(Q) 

<w(Q) from (W1) 

w(el lQ) <.w(e)+ w(Q) 

from (w3) 

from (W4) 

w(PUQ)=w(P)+w(P• from (W3) 

<<w(P)+w(Q) from (W5) 

~vT~ w( ~ ~n)-~ ~ w<~ by induction f,om ~V6~ 
n = l  n = l  

~v8~ w( ~ ~).~ ~ w~,~ 
n = l  n = l  

by taking limits in (W7). Observe that II~=IP. EA and w(Ll~=lP.)~< 1, 
but Y,.~lw(P.) need not be finite. 

2.4. Definition. A normed additive functional w on A is called a 
probability function on A iff 

(W9) w is continuous with respect to weak limits in A : if P. and P 
are projections in A and P.---~P weakly then w( P.)---~ w( P ). 

(W10) w(e )=  1, w(Q)= I~w(PAQ) = 1 
(W9) implies, in particular, that 

w( ~J P.)= lim w(PII IP2L]... liP.) 
n ~ 1 n - - - - ~ o o  

w( [~ P . ) =  lim w(PI[-]P2[7".. VII'.) 
n ~ 1 n---~oo 

For a very special case, axiom (Wl0) provides finite (sub-) additivity: 
(Wl0) is equivalent to 

w(e)  = 0, w(Q) =O~w(PVQ) =0 
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that is 
w(PV Q) = w(P) + w(Q) 

similarily (by induction) for m "impossible" events: 

(Wll) W(Pl) . . . . .  w(Pm)-=O~w Pi --0. 
j 1 

(Wl0) is perhaps the most controversial of the axioms defining a quantum 
theoretical probability function, even though it can be shown to be always 
true in classical (Kolmogorov) probability theory on Boolean lattices (see 
Jauch, 1976, p. 136). 

Jauch has also given simple physical interpretations for (Wl0) via 
filters. (Wl0) enters into the proof about the impossibility of hidden 
variables (Jauch, 1968, p. 117: Proof of the lemma; Jauch and Piron, 
1963). This proof has been challenged by Bell (1966) and Bub (1974, pp. 
60-64) by a criticism of (Wl0). 

We do not require o-additivity for w: 

enem=O, n=/=m~W(n~=lP~)= ~ w(P~) 
n ~ l  

(See, however, Jauch, 1968, p. 97, problem 9; and Neveu, 1964, p. 11.) In 
case of o-additivity, w can be represented by an operator p of trace class: 

w(P) =TrpP 

For the purpose of the present paper, the above axioms (W1), (W2), (W3), 
(wg), and (Wl0) are sufficient. [(W10) will only be used in (4.2).] It is 
important, however, that all trace-class probability functions also fulfill 
(W9): 

2.5. Theorem. If a sequence of projections Pn converges weakly 
towards a projection P, then 

Tr pPn-->Tr pP 

where p is a positive trace class operator with trace 1. 

Proof Cf. Jauch (1976), p. 137-138: Jauch's proof carries over here 
for weak convergence as well, since we assume uniform boundedness of P 
(which in Jauch's proof is deduced from strong convergence). �9 

2.6. Lemma. If PI,P2 . . . . .  P~ commute, then 

w(e, w(em) 
m = l  
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Proof n = 2  

w( el VP2) = w( el + P1 • APE) 

= w(el )  + w(e l  • AP2) from (W3) 

< w(P1) + w(P2) from (W5) 

The general case follows by induction. 
It is remarkable that w(P1VP2)<w(P1)+w(Pz) cannot be true for 

noncommuting Pz,P2 and for every normed additive functional w: 

PIVP2=PU(P~- F]P2) 

implies 

w(el v e 2 )  = W(Pl) "[- w(fl  • [~ e2) 

Now w(P~- [-7 PE) < w(Pz) for every w implies 

(rp, P1 • I~ PErp) < (q~,Pzq~) 

for every state cp E H, and this means 

PI • [--] P2 < P2 

i.e., Pl and P2 commute! If, however, P1 and P2 do not necessarily 
commute but are independent with respect to a fixed probability function 
w, we have again finite subadditivity: 

w(P, VP2) = w(P1) + w(P~- I - 1  P2) 

= w(P~) + W(Pl• (see Definition 2.7 below) 

<<, w(Pl) + w(Pz) from (Wl) 

2.7. Definition. Let Cl, C2,. . .  be a sequence of algebras of projections 
in H, and let a probability function w be defined on all C.. The sequence 
(Cn) is called sequentially w-independent, if for every finite choice of 
algebras 

c . l , c .  2, . . . .  

and any P,~ E C,~, i : = 1 . . . . .  k, the probability w(Pn, U]"" [-1 Pn~) does not 
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depend upon the order of the P,~, i = 1 . . . . .  k, and is equal to the product 
II~,_ l w( ?,,). 

In order to get a better understanding of w independence, let w = %  
be given by a fixed state vector q~ ~ H:  

w,(?)  = @p, Prp) 

for projections P. Let us discuss w~ independence of two projections P, Q. 
Assume that P and Q commute with respect to q~: 

It follows 

Then 

and observing 

eQep = QP~ 

PQ • = Q • (2.1) 

(% P/'~Q~) = l i ra(% (pQ)n ) = (%PQcp) 

= @ , P ~ >  - lira <,p, ( P Q  •  
k 

together with equation (2.1), yields 

(% P [-] Qcp ) = (% P~0) - ( %  PQ %p ) 

= (% (P - PQ J-)ep) = (% P a Y )  

= (q0, O [-i Pq~) 

Now we can easily prove the following theorem. 

2.8. Theorem. Assume that P and Q commute with respect to ~: 

Then P and Q 
( P -  w~(P))~p are orthogonal with respect to the inner product ( , ) .  

are w~ independent if and only if (Q-w~(Q))~ and 
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Proof. 

{(Q - w,(Q))% ( P -  w~(P))cp } 

= {% (Q - w~(Q)) ( P -  w~(P) )~  } 

= {cp, QPep} - w~(P){cp, Qcp} - w~(Q){cp, Pep}+ w~(P)w~(Q) 

= (rp, o e , ~ )  - % ( e ) % ( O )  

As we have shown above 

{% QP'~}={%PRQ~} 

and this proves the theorem. I 
As the probability w will be fixed from now on, we shall just say 

independent instead of sequentially w-independent. 

3. A Z E R O - O N E  LAW FOR SEQUENTIAL EVENTS 

We are now ready to prove that for every event T in the sequential 
terminal o-algebra A oo either w(T)=0 or w(T)= 1. Imitating as far as 
possible the procedure used for the corresponding proof in classical proba- 
bility theory (of. Chung, 1968, and Neveu, 1964), we introduce the concept 
of limit classes. 

3.1. Definition. A family L of projections in H is called a limit class if 
from P, E L ,  n =  1,2 . . . . .  Pn~P weakly, where P is a projection, it follows 
that P E L .  By ?~(C) we denote the smallest limit class containing all 
projections from the family C; ?~(C) is "generated" by C. 

It is clear that every o-algebra is a limit class. More precisely, we have 
the following lemma. 

3.2. Lemma. Let A be an algebra of projections in H.  Then A is a 
o-algebra r A is a limit class. 

The next lemma is trickier. It will be essential in the proof of our 
zero-one  law. 

3.3. Lemma. If A is an algebra, then ?~(A)= o(A). 

Proof (a) We prove first that for every Q ~ ( A ) ,  Co: = {PIPIIQ, Q 
UP, P•Q• QFqP• is a limit class. Let PnECQ, and Pn---~P 
weakly for a projection P. Since P, LJQ=Eo(Q• and Q• 
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Q . p l  weakly, PIIQECQ because X(A) is a limit class. The same 
argument applies for Q U P, P [-q Q • Q [-I P • 

(b) Secondly, we observe that for all projections R CA, A c C R, 
because A is an algebra, and A cX(A). It follows that for all R CA, 
X(A)c C R, because C R is a limit class. This means for every P CYk(A):P 
I IR, R L J P ,  P [ - ] R •  R [ - q P  • EX(A); hence A c C p  for every 
P E?t(A) and thus X(A)c  C e. Choosing R = 0  shows that X(A) is closed 
with respect to orthocomplements, so that 2t(A) is an algebra. [] 

It follows from Lemmas 3.3 and 3.2 that X(A) is even a o-algebra: 

3.4. Corollary. If A is an algebra, then X(A) = o(A). 
The following lemma ensures that independence of a o-algebra A and 

an algebra C is inherited by A and o(C). 

3.5. I_emma. Let A be a o-algebra and C be an algebra of projections 
in H. If A and C are independent, then A and o(C) are also independent. 

Proof (a) We prove that the family 

D -- ( P [ P  independent of A ) 

is a limit class. Let P,  and P be projections, P, C D, n = 1,2,. . . ,  and P,~P 
weakly. It follows that, for R CA, R ~ P , - - . R R P  and P . ~ R - - . P R R  
weakly. Continuity of w [see (W3)] yields independence of P and R. 

(b) Obviously C c D, so that together with Corollary 3.4: o(C)--X(C) 
C D, which had to be proved. [] 

3.6. Theorem. Let (P,)  be an independent sequence of projections in 
H. For  every T C A oo, either w(T) = 0 or w(T) = 1. 

Proof. We prove w(Tn  T)=w(T) 2. This, and T[-] T =  T, proves the 
theorem. First, we observe that the two algebras o(P 1 . . . . .  Pro) and 
o( Pm+ l,Pra+ l . . . .  )=Om+ 1 are independent for every mEN. As A oo C. Om+ I 

for every m, A~ and o(P1 ..... Pro) are independent for every m, so that A ~  
is also independent of the algebra O ~= I o ( P I  . . . . .  Pro)  = :C so that Lemma 
3.5 applies: A oo and o(C) are independent. On the other hand, 

Aooco,=o(P1,P 2 .... ) co(C)=o(  0 ~ .... ,Pro)) 
m ~ l  

which means that A~o must be independent of itself, i.e., 

w(rn  r)--- w(r).w(r) 

for every T E A oo. [] 
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We give an example  o f  two t e rmina l  events  in the  sequent ia l  t e rmina l  

o -a lgebra  

n = l  

where  o n = O(Pn,Pn+, . . . .  ). Choose  a sequence of  p ro jec t ions  En E on, a n d  
let  

E.+ : = E .  U E . + , U  -.- 

oo 

= U (Enl IE,,+ll  I " "  [-JEm)= V (En l lEn+lk_J  " '"  HE,.) 

Obviously, En + E on, and thus 

n = l  n = l  

x E E i f fx  E En + for  all n E ~ ,  i.e., x belongs  to every " ta i l "  

E n L J E n + , L J  " " 

which means  that  for  every  " m o m e n t "  n, " E  n or  then En+ 1 or  then - . .  ad  
inf ."  

N o w  define 

a n d  

F Z  : = E n ~ E . + ~ V q  . ."  

= ~'] ( E n R E n + , [ ~ " "  [-]E,, ,)Eo,,  
m ~ n  

F~:= ~ I'~ (E. nEn+,l--l"'" nEm)~A~ 
n ~ ]  m ~ t l  

Every  x ~ Foo is the l imit  of l inear  comb ina t i ons  of  vectors  y E F + ,  a n d  for  
t h e s e y  we h a v e y  E ( E  n and  then  En+ l a n d  then En+z . . .  ad  inf.), o r y ~ E  n 
a n d  y E E n [--] E n + 1 a n d  Y E e n [-] E n § 1 [-] En +2 and  . . . .  for  a cer ta in  n. 

Remark .  In  c lass ical  p r o b a b i l i t y  theory,  where  all p ro jec t ions  E n com-  
mute,  Eoo is the event  " E  n is o b s e r v e d  at  inf in i te ly  m a n y  ins tants  n",  or, 
shorter :  " E  n inf in i te ly  of ten" .  Foo represents  " F r o m  a ce r ta in  t ime n o on, 
all En, n > n o, h a p p e n " ,  or  shor ter :  " E  n a lmos t  a lways ."  
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4. A B O R E L - C A N T E L L I  C R I T E R I O N  F O R  S E Q U E N T I A L  
E V E N T S  

Theorem 3.6 states that Eo~ is either impossible: w ( E J  = O, or certain: 
w(Eoo ) = 1. There is a Borel-Cantelli-type criterion to decide which of the 
two actually occurs. 

4.1. Theorem. For projections E~ in H 

n = l  

Proof 

n = l  n = l  

m"m w(a 
n = l  

from (W9) 

< lirn w(E,. +) from (W5) 

< lirnoo '~  w(Ej)=0 from(W7) I 
j = m  

There is a striking converse to Theorem 4.1 for independent projec- 
tions En: 

4.2. Theorem. If the sequence (En) of projections in H is independent, 
then 

n = l  

Proof 

(3 ( : ,) w(E~)=w (E~I--IE, X+|[~ =w lim • J- �9 . .  ( E ,  V 1 E , + | R " "  
1 m---~oe n =  l 

= l im w( ~/ (E~E~X+l[-q...)) 
nt---~oO n m | 

from (W9) 
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but 

w(E2~E~l~-..)=w( (~ (E~r--l'.. ~E))) 
m = n  

= w  lim ~ (E~[--] . . -V1E,, ,  ~) (W9) 
k - - - ~  m ~  n 

< lim w(E~F]... RE~) (W5) 

k 

= lira ~I [ 1 - w ( E j ) ]  (2.7) 
k - - - ~  j ~ n  

~< lim exp - w =0  
k---~ ~ 

(W11) yields w(E~)=0, i.e., w(E~) = 1, by (W4). �9 

If the o-algebras o n are generated by independent projections Pj, then 
Theorem 4.2 can be applied to Ej = Pj. 

We conclude this paper with a remark on the Jauch-Piron axiom 
(W10). The axiom 

(W10) w(P)-- 1, w(Q)=  I~w(PAQ)= 1 
or equivalently 

(Wl l )  w ( e ) = 0 ,  w(Q)=O~w(PVQ)=O 
entered the proof of the Borel-Cantelli Theorem 4.2 at a crucial point. 
(Wl0) and (Wl 1) are properties of w, holding for all projections P, Q in H. 
If, on the other hand, we fix a pair of projections P, Q and assume (Wl 1) 
to be true for all normed additive functionals w, then P and Q must 
commute ! 

It suffices to show that for the interference term I(P, Q) 

w~(I(P, Q)) = 0 (7.1) 

holds for all r from a complete orthonormal system of vectors ~0 in H. 
From w~(P)=w~(Q)=O and O=w,~(PVQ)=w~(Q)+w~(Q• 

follows w,c(Q• and from Q[-qP<Q we know also that w~(Q 
f']P)---0 [by (W5) and (W1)]. 

The identity (cf. Section 1) 

P= Q[--IP + Q • r]P-  I(P,Q) 

and linearity of w~ prove (7.1). 
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The following suggestive reformulation is perhaps more intuitive: 

If from the certainty (truth) of P and Q for all preparations r it 
follows that P A  Q is also certain (true), then P and Q must be commensur- 
able. 
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